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We consider the quantum mechanics of a system whose configuration 
space, ~ ' ,  possesses a transitive group of motions, G. ~h t can then be 
identified with the homogeneous space G/H where H is a subgroup of G. 
For  simplicity we assume that G is compact and semi-simple. ~ can then 
be endowed with a G-invariant Riemannian metric and it is reasonable to 
assume that Schr6dinger's equation takes the covariant form 

--~A2 ~k(q) = i~(q), q ~ ,//{ (1) 

where A2 is the Laplace-Beltrami operator, so that the quantum system is 
invariant under G. Of course this last condition does not fix Schr6dinger's 
equation uniquely. 

According to the Peter-Weyl theorem any function on G, say ~(g), can 
be expanded in the representation matrices, ~ , ) (g ) ,  thus 

~(g) = E ~ ~ ~ (g) 
If  we now integrate out the subgroup H w e  have the expansion of a function 
on J~, which can be considered to be a function on G constant on right 
cosets, i.e., 

~(gh) = ~(g) - tp(q) 
Thus 

where 
~(q) = ~ ~(~ Y~(q)  

y~)(q) = y~Z~(g) = f ~ ) , ( gh )  dh = Y ~ ( g k )  (2 / 
It 

The v(2~) are the spherical functions on ~ introduced by Caftan (1929) in 
a classic paper (see Vilenkin, 1968). It is important to know how many 
independent such functions there are for a given set of representation 
labels (1). This number can be found, in general terms, as follows. From (2) 
we have 

( l )  _ (1) Z%(g) - ~,.k(g) f ~'2(h) dh 
/:/ 
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and for this to be non-zero the representation (I) of G must contain the 
trivial, i.e. unit, representation of H at least once, when G is reduced to H. 
Call the number of times this representation is contained in (l), n(l), then 
the number of linearly independent y~l) for a given (1) is n(l)d(I) where 
d(1) is the dimension of the (/)-representation. This is easily shown by 
reducing the representation (l), of G, to H. The number n(l) is of course 
the number of independent vectors in the carrier space of the (/)-representa- 
tion invariant under H (Vilenkin, 1968). Standard group theory provides 
a general expression for n(l), 

n(l) = I H [  - ~  f z"~(h) dh 
H 

where X ~z) is the character of the (/)-representation, and IHI the volume 
of H. 

Turning now to the SchrSdinger equation (1) and its eigenfunctions we 
note that the Laplace-Beltrami operator on de' is given by the restriction 
of the Laplace-Beltrami operator on G, A2 G, to its action on functions on 
G constant on right cosets. Now A2 t~ is just the (first) Casimir operator of 
G and we can now easily determine the energy eigenvalues if the SchrSdinger 
equation is as in equation (1). We find for these eigenvalues 

Ec~ ) = �89 2 - R 2) 

where K is a vector determined entirely by the representation labels (1) and 
R is half the sum of the positive roots of the Lie algebra of G (see, e.g., 
Racah, 1951). The corresponding eigenfunctions are y~z), up to a 
normalisation, and so the degeneracy of the E(t~ level is n(1)d(l). 
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