On the Degeneracies of Quantum Systems

J. S. DOWKER

Department of Theoretical Physics, University of Manchester, Manchester, England

Received: 16 October 1972

We consider the quantum mechanics of a system whose configuration space, \mathcal{M} , possesses a transitive group of motions, G. \mathcal{M} can then be identified with the homogeneous space G/H where H is a subgroup of G. For simplicity we assume that G is compact and semi-simple. $\mathcal M$ can then be endowed with a G-invariant Riemannian metric and it is reasonable to assume that Schrödinger's equation takes the covariant form

$$
-\frac{1}{2}A_2\psi(q) = i\psi(q), \qquad q \in \mathcal{M} \tag{1}
$$

where A_2 is the Laplace-Beltrami operator, so that the quantum system is invariant under G . Of course this last condition does not fix Schrödinger's equation uniquely.

According to the Peter-Weyl theorem any function on G, say $\tilde{\psi}(g)$, can be expanded in the representation matrices, $\mathscr{D}_{mn}^{(l)}(g)$, thus

$$
\tilde{\psi}(g) = \sum \tilde{\psi}^{mn}_{(l)} \mathscr{D}^{(l)}_{mn}(g)
$$

If we now integrate out the subgroup H we have the expansion of a function on M , which can be considered to be a function on G constant on right cosets, i.e., $\tilde{\psi}(gh) = \tilde{\psi}(g) \equiv \psi(g)$

 $d(a) = \sum_{l} d_l^{mn} Y^{(l)}(a)$

Thus

$$
Y_{mn}^{(1)}(q) \equiv Y_{mn}^{(1)}(g) \equiv \int_{H} \mathcal{D}_{mn}^{(1)}(gh) dh = Y_{mn}^{(1)}(gh)
$$
 (2)

where

The $Y_{mn}^{(1)}$ are the spherical functions on $\mathcal M$ introduced by Cartan (1929) in a classic paper (see Vilenkin, 1968). It is important to know how many independent such functions there are for a given set of representation labels (l) . This number can be found, in general terms, as follows. From (2) we have

$$
Y_{mn}^{(1)}(g) = \mathscr{D}_{mk}^{(1)}(g) \int\limits_{\mathbf{H}} \mathscr{D}_{kn}^{(1)}(h) dh
$$

Copyright © 1973 Plenum Publishing Company Limited. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, microfil Limited.

and for this to be non-zero the representation (l) of G must contain the trivial, i.e. unit, representation of H at least once, when G is reduced to H. Call the number of times this representation is contained in (l) , $n(l)$, then the number of linearly independent $Y_{mn}^{(1)}$ for a given (*l*) is $n(l)d(l)$ where $d(l)$ is the dimension of the (l) -representation. This is easily shown by reducing the representation (l) , of \tilde{G} , to H . The number $n(l)$ is of course the number of independent vectors in the carrier space of the (l) -representation invariant under H (Vilenkin, 1968). Standard group theory provides a general expression for *n(l),*

$$
n(l) = |H|^{-1} \int\limits_H \chi^{(l)}(h) dh
$$

where $\chi^{(1)}$ is the character of the (*l*)-representation, and $|H|$ the volume of H .

Turning now to the Schrödinger equation (1) and its eigenfunctions we note that the Laplace-Beltrami operator on $\mathcal M$ is given by the restriction of the Laplace–Beltrami operator on G, Λ_2^G , to its action on functions on G constant on right cosets. Now A_2 ^G is just the (first) Casimir operator of G and we can now easily determine the energy eigenvalues if the Schrödinger equation is as in equation (1). We find for these eigenvalues

$$
E_{(1)}=\tfrac{1}{2}(\mathbf{K}^2-\mathbf{R}^2)
$$

where \bf{K} is a vector determined entirely by the representation labels (*l*) and **R** is half the sum of the positive roots of the Lie algebra of G (see, e.g., Racah, 1951). The corresponding eigenfunctions are $Y_{nm}^{(1)}$, up to a normalisation, and so the degeneracy of the $E_{(1)}$ level is $n(l)d(l)$.

References

Cartan, E. (1929). *Rendiconti del Circolo matematico di Palermo,* 53, 217.

- Racah, G. (1951). 'Group Theory and Spectroscopy', lectures given at Princeton University.
- Vilenkin, N. J. (1968). *Special Functions and the Theory of Group Representations.* American Mathematical Society, Providence.